NexusForge Al

v1.0.1

Complete End User Guide

"You Direct. NexusForge Builds. Zero Code Required."

Document Version 1.0.1
Product Version 1.0.1

Classification End User Documentation

T

1.
2.
3.

4,

10.

11.

12.

13.

14,

15.

16.

able of Contents

Getting Started
Installation & Setup
First Steps

Core Concepts

. Basic Usage

. Advanced Features

. Project Management

. Al Interaction Patterns

. Plugin Management

Security & Privacy
Performance Optimization
Troubleshooting

Best Practices

Keyboard Shortcuts
Configuration Reference

FAQ

1. Getting Started

What is NexusForge Al?

NexusForge Al is an autonomous development environment that transforms your ideas into working software
using natural language. Simply describe what you want to build, and NexusForge creates complete,
production-ready applications.

Key Benefits

* 100% Local Operation: Your code never leaves your machine
e Autonomous Development: Minimal manual coding required
* Privacy-First: Complete control over your data
« Multi-Domain: Supports any technology stack
» Enterprise-Grade: Professional quality with safety guarantees

Who Should Use NexusForge?

» Developers: Accelerate development with Al assistance

* Product Managers: Rapidly prototype and validate ideas

» Entrepreneurs: Build MVPs without extensive technical knowledge
« Students: Learn by example with Al-generated code

» Teams: Standardize development practices and workflows

2. Installation & Setup

Prerequisites

* Operating System: Linux, macOS, or Windows

« Python: 3.8 or higher

* Memory: 8GB RAM minimum (16GB recommended)

« Storage: 10GB free space

* GPU: Optional but recommended for faster Al processing

Installation Steps

Step 1: Install NexusForge
git clone https://github.conl nexusforge-ai/nexusforge.git

cd nexusforge & pip install -e .

Step 2: Install Ollama (Local Al)

curl -fsSL https://ollama.ai/install.sh | sh

Step 3: Initialize NexusForge

nexusforge init

Step 4: Verify Installation

nexusforge status

You should see: NexusForge Al Ready, Ollama Connected, Models Available, Monitoring Active

3. First Steps

Your First Project

1. Start a Chat Session

nexusf orge chat

2. Describe Your Project

Example: "I want to build a todo app with React and Node.js that includes user authentication and real-time
updates.”

3. Let NexusForge Analyze

NexusForge will analyze your requirements, suggest architecture, recommend technologies, and create a
project plan.

4. Approve and Build

Once you confirm, NexusForge will autonomously create project structure, generate all files, set up database
schemas, implement authentication, add real-time features, create tests, and generate documentation.

Understanding the Output

« frontend/ - React application

* backend/ - Node.js API

- database/ - Database setup

« tests/ - Comprehensive test suite

« docs/ - Complete documentation
 docker-compose.yml - Easy deployment
« README.md - Setup instructions

4. Core Concepts

1. Autonomous Building
NexusForge doesn't just generate code—it creates complete, working applications:

 Architecture Planning: Designs optimal system architecture
» Technology Selection: Chooses best-fit technologies

» Code Generation: Writes production-quality code

« Testing: Creates comprehensive test suites

* Documentation: Generates complete documentation

2. Natural Language Programming
Describe what you want in plain English:

« "Build a web app for managing customer orders"
« "Create a mobile app that tracks fithess goals"

« "Design a microservice for processing payments"
« "Build a dashboard for monitoring server metrics"

3. Context Awareness

* Project History: Remembers all previous changes

« Code Relationships: Understands how files connect
» Technology Stack: Knows your chosen frameworks
 Best Practices: Follows established patterns

4. Safety-First Approach

» Operation Validation: Confirms risky operations

« Automatic Backups: Saves versions before changes
 Rollback Capability: Undo any unwanted changes

» Security Scanning: Detects potential vulnerabilities

5. Basic Usage

Core Commands

Command Description

nexusf orge chat Interactive conversation mode
nexusforge init [project-nane] Quick project setup
nexusforge build [options] Autonomous building
nexusforge status Project status
nexusforge prd load <file> Load requirements document
nexusforge direct "<instruction>" Direct high-level instruction
nexusforge task "<task>" Execute specific task
Build Options

* —-interactive: Step-by-step guided building

e --autonomous: Fully autonomous execution
 --aggressive: Fast iteration mode

« --lightning: Maximum speed building

Slash Commands in Chat Mode

« /prd load - Load and analyze PRD

* /plugins list - Show available plugins

« /plugins install - Install community plugin

« /monitor open - Launch monitoring dashboard
* /session save - Save current session

« /session load - Load saved session

« /build start - Begin autonomous build

« /help - Show all commands

6. Advanced Features

Autonomous Build Modes

Interactive Mode

nexusforge build --interactive

Best for learning. Provides step-by-step explanations, confirmation before each phase, educational insights,
and customization options.

Autonomous Mode

nexusforge build --autononous

For experienced users. Minimal intervention, optimal architecture decisions, best practice implementation, and
comprehensive error handling.

Lightning Mode
nexusforge build --1ightning

Maximum speed for rapid prototyping. Parallel file generation, minimal validation, quick MVP creation, and
iterative improvement.

Project Templates

» Web: react-app, nextjs-fullstack, vue-spa
 APIs: fastapi-rest, express-graphql, django-rest
« Mobile: react-native, flutter-app

* Desktop: electron-app, tauri-app

nexusforge init --tenplate react-app

7. Project Management

Project Initialization
When you run nexusforge init, NexusForge performs deep analysis:

« Directory Analysis: Understands existing code structure

» Dependency Detection: Identifies all dependencies and frameworks
 Pattern Recognition: Learns your coding patterns

» Configuration Setup: Creates optimal configuration

« Documentation Generation: Creates comprehensive docs

Requirements Management

nexusforge prd | oad requirenents. nd

NexusForge analyzes requirements for:

 Feature Completeness: Identifies missing requirements

« Technical Feasibility: Assesses implementation complexity
« Architecture Implications: Suggests optimal architecture
 Timeline Estimation: Provides realistic timelines

* Risk Assessment: Identifies potential challenges

Project Status Monitoring

nexusforge status

« Project Health: Overall project status

« Build Status: Last build results

« Test Coverage: Code coverage metrics
 Technical Debt: Code quality issues

« Security: Security scan results

8. Al Interaction Patterns

Effective Communication

Being Specific
Poor: "Make a website"

Good: "Create a portfolio website with a hero section, project gallery, contact form, and blog using React
and Tailwind CSS"

Iterative Development

Start simple and add features iteratively:

1. "Create a basic todo app with add and delete functionality"
2. "Add categories and priority levels to the todos"

3. "Add user accounts and todo sharing"

4. "Add email reminders and notifications"

Advanced Interaction Techniques

Architecture Discussions

"What's the best architecture for a real-time chat application that needs to scale to 10,000+ concurrent users?"

Code Review

"Review the authentication middleware for security issues and performance problems"

Debugging Assistance

"The payment processing is failing with a 400 error, but | can't figure out why"

9. Plugin Management

Plugin Tiers
Tier Plugins
Free 1 community plugin $0
Solo Pro 5 community plugins $19/month
Team 20 community plugins $49/month
Enterprise Unlimited Custom

Plugin Commands

« nexusforge plugins list - View all available plugins
« nexusforge plugins info - Show plugin details

« nexusforge plugins install - Install plugin

« nexusforge plugins remove - Remove plugin

« nexusforge plugins update - Update all plugins

Core Plugins (Always Available)

« AI/ML: Model management, prompt engineering, RAG
 Database: PostgreSQL, MongoDB, Redis, SQLite

« l0T: Arduino, ESP32, Raspberry Pi

« Security: OAuth, JWT, encryption, scanning

* Frameworks: React, Vue, Django, FastAPI, Flutter

10. Security & Privacy

Privacy-First Design
What Data Stays Local:

» Source Code: Never transmitted outside your machine
* Project Files: Stored only on your local system

» Conversations: Kept in local sessions

* Credentials: Stored in secure local keyring

 Personal Information: Never collected or transmitted

Security Features
Path Protection:

NexusForge prevents modifying system directories (/etc, /usr, /bin), accessing sensitive files, and operations
outside project boundaries.

Command Validation:

Dangerous commands are blocked: rm -rf /, sudo chmod 777, git reset --hard HEAD~100

Privacy Controls

 nexusforge telemetry status - Check telemetry status

« nexusforge telemetry disable - Disable all telemetry

* nexusforge data show - Show all stored data

« nexusforge data purge --confirm - Complete data removal

11. Performance Optimization

Monitoring Dashboard
nexusf orge nonitor
Dashboard available at: http://localhost:5555
Dashboard shows:

» System Metrics: CPU, RAM, GPU usage
« Al Performance: Response times, token usage
« Cache Efficiency: Hit rates, compression ratios
* Project Statistics: Build times, file counts

Performance Commands

 nexusforge perf status - Performance status

« nexusforge perf benchmark - Benchmark system

* nexusforge perf optimize - Optimize for current project
« nexusforge compress benchmark - Test compression

* nexusforge cache optimize - Optimize cache settings

OpenZL Compression Benefits

* 90% space reduction for project files
 Sub-millisecond file access after caching
« Intelligent learning from your project patterns

12. Troubleshooting

Common Issues

Python Version Issues
python --version # Should be 3.8 or higher

Ollama Connection Issues

ollama list && ol |l ama serve

Permission Errors (Linux/macQOS)
sudo chown -R $USER $USER ~/. nexusf orge/

Al Responses Slow

 nexusforge perf optimize
* nexusforge config set model lightweight-model
» Enable GPU acceleration: nexusforge gpu configure

Cache Corruption

nexusforge cache cl ear && nexusforge cache rebuild

Getting Help

 nexusforge help - General help

« nexusforge help - Command-specific help
 nexusforge diagnose - Full system diagnostic
* nexusforge logs show - View recent logs

13. Best Practices

Project Organization
Recommended folder structure:

« .nexusforge/ - NexusForge configuration

« src/ - Source code (components, pages, utils, config)
* tests/ - Test suites (unit, integration, e2e)

* docs/ - Documentation

* scripts/ - Build and utility scripts

Communication Best Practices

Good: "Create a user registration form with email validation, password strength checking, terms of service
agreement, and success/error messaging"

Poor: "Make a signup form"

Security Best Practices

 Always use secure authentication with password hashing and JWT
» Add comprehensive input validation for all API endpoints

 Use environment variables for all secrets and API keys

» Request security scanning after major changes

14. Keyboard Shortcuts

Global Shortcuts

Shortcut Action

Ctrl+C / Cmd+C Cancel current operation
Ctrl+D / Cmd+D Exit chat mode

Ctrl+L / Cmd+L Clear screen

Ctrl+R / Cmd+R Refresh/reload

Tab Auto-complete command/path

Chat Mode Shortcuts

» Up/Down arrows: Navigate command history
« Ctrl+A / Cmd+A: Move to beginning of line

* Ctrl+E / Cmd+E: Move to end of line

* Ctrl+W / Cmd+W: Delete word backwards

« Ctrl+U / Cmd+U: Clear entire line

Navigation Shortcuts

* Ctrl+N / Cmd+N: New project/session

« Ctrl+O / Cmd+O: Open project

* Ctrl+S / Cmd+S: Save current session

* Ctrl+P / Cmd+P: Open quick command palette

15. Configuration Reference

Configuration File Location

Linux/macOS: ~/.nexusforge/config.yaml | Windows: %USERPROFILE%\.nexusforge\config.yaml

Basic Configuration

* Al Settings: provider, model, temperature, max_tokens

* Build Settings: mode, auto_test, auto_docs, quality _gates

» Performance: cache_enabled, compression_enabled, gpu_acceleration
 Security: safe_mode, confirm_risky _operations, backup_before_changes
« Privacy: telemetry_enabled, crash_reporting, usage_analytics

Environment Variables

* NEXUSFORGE_HOME - Configuration directory

* NEXUSFORGE_MODEL - Default Al model

* NEXUSFORGE_CACHE_SIZE - Cache size limit

* NEXUSFORGE_GPU_ENABLED - Enable GPU acceleration
* NEXUSFORGE_LOG_LEVEL - Logging verbosity

16. FAQ

General Questions
Q: Is my code sent to external servers?

A: No. NexusForge operates 100% locally. Your code never leaves your machine.
Q: What programming languages does NexusForge support?

A: All major languages: JavaScript, TypeScript, Python, PHP, Ruby, Swift, Kotlin, Dart, C#, Java, Rust, Go,
C++, R, SQL, and more.

Q: Can | use NexusForge for commercial projects?

A: Yes. The generated code is yours to use commercially without restrictions.

Technical Questions
Q: How much RAM does NexusForge need?
A: 8GB minimum, 16GB recommended, 32GB for large projects.
Q: Does NexusForge work offline?
A: Yes. Once models are downloaded, NexusForge works completely offline.
Q: Does NexusForge generate tests?

A: Yes. Comprehensive test suites including unit, integration, e2e, and security tests.

Getting Support

« Official Docs: https://docs.nexusforge.ai
« Discord: https://discord.gg/nexusforge

« GitHub: https://github.com/nexusforge-ai
» Email: support@nexusforge.ai

NexusForge Al transforms the way you build software by providing an intelligent, autonomous development
partner that understands your requirements and delivers production-ready solutions.

